Research Article

[6, 7, 10, $11^{-13}C_4$]-Labelled leukotriene B₄ synthesis: standard for mass spectrometry determination and metabolic studies

Michel Treilhou^{1,2,*} and François Couderc²

¹ Laboratoire de Biochimie, Ecole Nationale de Formation Agronomique, BP 87, 31326 Castanet-Tolosan Cedex, France ² Laboratoire des Interactions Moléculaires, Réactivité Chimique et Platachimique Minimutité P. Schotier CNPS, 118 parts de Northerne 21062

Photochimique, Universitié P. Sabatier-CNRS, 118 route de Narbonne 31062 Toulouse Cedex, France

Summary

The mass spectrometry quantification and metabolic studies of leukotriene B_4 (LTB₄) in biological fluids require standards labelled with stable isotopes. This paper describes the synthesis of LTB₄ labelled with ¹³C in positions 6, 7, 10 and 11 (<u>1</u>). These labelled carbons come from ¹³C₂-acetylene. A labelled LTB₄ is obtained with an isotopic enrichment of 99%. Copyright © 2001 John Wiley & Sons, Ltd.

Key Words: quantification LTB_4 ; ¹³C labelled standard; GC/MS; LTB_4 metabolism; Pd°/Cu coupling reactions; stereoselective reduction of alkynes

Introduction

The leukotrienes discovered at the beginning of the 1980s are high biological activity compounds which come from the transformation of arachidonic acid by 5-Lipoxygenase.¹ These lipid mediators, often present in biological fluids in extremely low concentrations, exert a

Copyright © 2001 John Wiley & Sons, Ltd.

Received 2 April 2001 Revised 31 May 2001 Accepted 4 June 2001

^{*}Correspondence to: M. Treilhou, UPS, Laboratoire des IMRCP, 118 route de Narbonne, 31062 Toulouse-Cedex, France. E-mail: michel.treilhou@educagri.fr

variety of biological actions and are thought to play roles in many diseases.^{2–6} Highly sensitive methods are required for the analysis of these mediators. Until now, their quantification and studies in biological fluids has remained difficult and generally used immunoassay^{7,8} or HPLC with prostaglandins B_2 as internal standards or LTB₄ as external standard.^{9,10} However, interference between biological matrix molecules can compromise the interpretation of the results. Measuring techniques must be sensitive and specific, so mass spectrometry associated with gas chromatography (GC–MS) will be a particularly good method as long as adequate internal standards are used. Labelled leukotrienes incorporating stable isotopes are potentially ideal standards.

The use of GC/MS with ¹⁸O₂-LTB₄ as an internal standard allowed Wescott *et al.*¹¹ to measure natural LTB₄ in a number of biological fluids. But he observed that when the standard was introduced in the biological sample, the ¹⁸O atoms in the ¹⁸O₂-LTB₄ slowly back exchanged with the ¹⁶O in the water medium, thereby affecting the results. Oda *et al.* made measurements using ²H₄-LTB₄ and liquid chromatography tandem mass spectrometry.¹² Nevertheless, the ²H were dispersed by the fragmentation of the parent ion. In so doing, the advantages of ²H tetra-labelling were lost. That compromised the use of the ²H₄ labelled standard LTB₄ for quantification studies.

To improve on this type of study, the synthesis of $\underline{1}$ was undertaken (Figure 1). Using ¹³C stable isotopes will ensure that no back exchange takes place and present several advantages.

First of all, the chromatography characteristics of the molecule are very close to those of natural LTB₄. It also has the same mass spectrometry fragmentation mechanisms, which allows analytical studies using GC/MS. With a difference in mass of four units, the isotopic profile of the labelled derivative and the natural one are clearly defined. Consequently, there is no risk of interference between the signals due to natural LTB₄ ions and those from the labelled standard. Finally, by placing the ¹³C-atoms on positions 6, 7, 10, 11, the difference in mass is completely preserved on the fragments which are

Figure 1. [6, 7, 10, 11-¹³C₄]LTB₄

Copyright © 2001 John Wiley & Sons, Ltd.

J Labelled Cpd Radiopharm 2001; 44: 737-745

characteristic of the molecule being studied. This is true for any mode of ionization used. Moreover, this standard is also interesting for metabolic studies.

An asymmetric synthesis would be unnecessary, because it has been shown in previous experiments¹³ that it is possible to separate the diastereoisomers by flash chromatography. Natural LTB₄ is the 5S-12R enantiomer, consequently the 5S-12R, 5R-12S enantiomeric mixture can be used for analytical purposes since the chromatographic phases used in GC/MS do not allow enantiomeric resolutions.

Results and discussion

The retrosynthetic route (Figure 2) developed for the synthesis of chiral LTB_4^{14} was again used for this research. The (*E*,*E*,*Z*) conjugated trienic system is constructed from two propargylic alcohols **3** and **2** condensed with (trimethylsilyl)acetylene using tetrakis(triphenylphosphine)palladium [(Ph₃P)₄Pd] as a coupling catalyst reagent.

The insertion of the ¹³C-atoms during the synthesis of propargylic alcohols is achieved by opening precursory aldehydes $\underline{4}$ and $\underline{5}$ using monolithium ¹³C₂-acetylene. (Figures 3 and 4).

Figure 2. Retrosynthetic route for ¹³C₄-LTB₄ synthesis

Figure 3. Synthesis route of synthon 2

Copyright © 2001 John Wiley & Sons, Ltd.

J Labelled Cpd Radiopharm 2001; 44: 737-745

Key : (a) *t*-BDMSiCl, imidazole, DMF, 35°C; (b) Cp₂Zr(Cl)H, C₆H₆, 40°C, I₂ ; (c) HC≡CSiMe₃, (Ph₃P)₄Pd - CuI, C₆H₆, *n*-BuNH₂ ; (d) AgNO₃, EtOH/H₂O, 30°C ; KCN, H₂O ; (e) Cp₂Zr(Cl)H, C₆H₆/THF, 35°C, I₂ ;(f) Bu₄NF, THF ; CH₂N₂ ; (g) Zn, MeOH/H₂O, 30°C; (h) K₂CO₃, MeOH/H₂O.

Figure 5. Synthesis of labelled LTB₄ 1

Commercially available *cis*-3-nonen-1-ol was oxidized to the corresponding aldehyde **4** with pyridinium chlorochromate (PCC). Synthon **2** results in the opening of this aldehyde with monolithium ${}^{13}C_2$ -acetylene at $-78^{\circ}C$ in dried tetrahydrofuran.

Aldehyde $\underline{5}$ is the result of catalytic hydrogenation of methyl 4-(chloroformyl) butyrate and is used freshly distilled. After treatment with labelled monolithium acetylene it afforded the propargylic alcohol $\underline{3}$.

The other feature of this route was the production of a pure triene system. This was accomplished by using the couple $(PPh_3)_4Pd/CuI (Pd^{\circ}/Cu)$ as a catalyst in the condensation of the terminal acetylenic derivatives **2** or **3** with the vinyl halides **6** or **9**.^{15,16} The formation of the C₉–C₁₀ and C₇–C₈ bonds and the details of the synthesis are illustrated in Figure 5. The geometry of the triene system (*E*, *E*, *Z*) was accurately reproduced.

Vinyl iodide <u>6</u> was produced in a 91% yield from <u>10</u> by hydrozirconation using Bis(cyclopentadienyl)zirconium chloride hydride (Cp₂Zr(Cl)H; Schwartz's reagent) followed by iodination of the intermediate organometallic.¹⁷ The C₉–C₁₀ bond was formed by condensing <u>6</u> with (trimethylsilyl)acetylene in the presence of Pd°/Cu. The enyne <u>8</u> was obtained by specific desilylation of the triple bond of compound <u>7</u>.¹⁸

Hydrozirconation followed by iodination of $\underline{8}$ afforded the vinyl iodide $\underline{9}$, which was condensed with the terminal acetylene group of compound <u>11</u>, thereby forming the C₇–C₈ bond. The dienyne <u>13</u> was obtained by desilylation using tetrabutylammonium fluoride (Bu₄NF) followed by a partial reduction using activated zinc¹⁹ to give the methyl ester of ¹³C₄-LTB₄ <u>14</u>. The four-isomer mixture of labelled LTB₄ methyl ester <u>14</u> was obtained. Then the enantiomer pair 5S-12R, 5R-12S was isolated by flash chromatography¹³. Finally, the standard <u>1</u> was released by hydrolysis of the methyl ester <u>14</u> using K₂CO₃.

Conclusion

This research led to the production of 14 mg of ${}^{13}C_4$ -LTB₄. All the reactions utilized conformed to the results obtained during the development of the asymmetric synthesis of LTB4.¹⁴ The yields and the physico-chemical characteristics of the labelled compounds obtained are identical, with the exception of the ¹H-NMR and mass spectra.

The use of this standard with GC/MS (chemical ionization with ammonia) led to a spectrum which met our expectations: all the ions had an excess mass of four units (Spectrum 1). Thus, the pseudomo-

Spectrum 1. GC/MS of TMS derivative of ¹³C₄-LTB₄ methyl ester

Copyright © 2001 John Wiley & Sons, Ltd.

lecular ion $[M + NH_4]^+$ was observed at m/z 516 instead of at 512 which corresponds to the natural product. The spectrum also showed the ions at m/z 409, 426 and 319 corresponding to the loss of one or two silanols, instead of 405, 422 and 315.

The isotopic purity was checked with a FAB spectrum because this ionization technique allows one to obtain better ionic statistics than with a GC/MS-CI. According to the supplier specifications of the labelled acetylene, the isotopic enrichment is 99%. We now have an ideal standard for analytical studies of LTB_4 in biological fluids.

Experimental section

All protocols for the synthesis of chiral LTB₄ have been published.¹⁴ Only new compounds and spectrometric characteristics (¹H-NMR and mass spectra) are presented in this paper. The ¹H-NMR spectra were recorded in CDCl₃ at 300 MHz. Exact mass and GC/MS studies were carried out with a ZAB 2F instrument (VG-analytical, Manchester, UK). It was connected to a DANI 3800 chromatograph equipped with a 25 m × 0.25 mm i.d. OV-1 coated fused silica column (spiral, Dijon, France).

Methyl 4-formylbutyrate (5). 640 mg of Pd/C (5%) was saturated with hydrogen in a solution of 4.2 ml of 2,6-lutidine and 130 ml dried THF. Then, 5.25 g (32 mmol) of methyl 4-chloroformylbutyrate was introduced. The suspension was vigorously stirred under hydrogen pressure until consumption stopped. After elimination of hydrogen under reduced pressure, the suspension was filtered, concentrated and distilled (75°C/10 mm Hg) in the presence of 5 mg of *para*-toluene sulfonic acid. The resultant aldehyde 5 was obtained as a colorless oil (3.2 mg, 24.5 mmol, 77%) which was immediately used in the next step.

¹³C₂-Methyl 5-hydroxy-6-heptynoate (synthon <u>3</u>). Anhydrous THF (50 ml) was placed in a thoroughly dried, round-bottomed flask under argon and cooled to -78° C. With continuous stirring, 500 ml (22.3 mmol) of labelled acetylene was added. A 13.9 ml (22.3 mmol) portion of *n*BuLi (1.6 M/hexane) was then added dropwise. After stirring for 20 min at -78° C, the aldehyde <u>5</u> (3.2 g, 24.5 mmol) in 10 ml of anhydrous THF was added slowly. After 20 min of additional stirring at -78° C, the temperature of the mixture was allowed to rise to room temperature. The mixture was hydrolysed with 70 ml of 5% aqueous NH₄Cl and then extracted with ether (3 × 100 ml). The combined

organic phases were washed with 50 ml of H₂O and 50 ml of saturated NaCl, dried, and concentrated. A yellowish oil was obtained. After chromatography (150 g silica; CH₂Cl₂/ethyl acetate (95:5) v/v; R_f =0.36) 3 g (19 mmol, 78%) of compound **3** was isolated as a colorless oil; IR (film) v 3500 3300 (s), 3400 (s), 2100 (w), 1730 (s) cm⁻¹; ¹H-NMR δ 5.64 (1H, dtt, J=10.9, 6, 1.5 Hz, H₆), 5.45 (1H, dtt, J=10.9, 6.5, 1.5 Hz, H₅), 4.38 (1H, td, J=6.5, 2 Hz, H₃), 2.5 (2H, ddd, J=6.5, 1.5 Hz, H₄), 2.45 (1H, d, J=2 Hz, H₁), 2.06 (2H, tdd, J=6, 1.5 Hz, H₇), 1.8 (1H, s, OH), 1.3 (6H, m, H₈₋₉₋₁₀), 0.87 (3H, t, J=6.8 Hz, H₁₁); MS (CI-NH₃) [M+NH₄]⁺ m/z 176; High-resolution MS (EI) of TMS derivative; [M-15]⁺ found m/z 215.1025, calculated for ¹³C₂ ¹²C₈H₁₇O₃Si 215.1014.

(3Z)-Non-3-enal (4). The highly unstable compound 4 was used immediately for the following reaction. Only its IR spectrum was recorded: IR (film) v 3020 (w), 2720 (m), 1730 (s) cm⁻¹. A single peak was observed by GC.

 ${}^{13}C_2$ -5-Undecen-1-yn-3-ol (synthon 2). ¹H-NMR δ 2.45 (1H, ddd, $J_{\text{H1-C1}} = 247,5 \text{ Hz}, J_{\text{H1-C2}} = 51,25 \text{ Hz}, J_{\text{H1-H3}} = 2 \text{ Hz}, \text{H}_1$); High-resolution MS (CI–NH₃) [M + NH₄]⁺ found m/z 186.1768, calculated for ${}^{13}C_2 {}^{12}C_9H_{22}$ NO 186.17698.

 ${}^{13}C_2$ -3-[(tert-Butyldimethylsilyl)oxy]-5-undecen-1-yne (<u>10</u>). ¹H-NMR idem synthon **2**; MS (CI-NH₃) [M + NH₄]⁺ at m/z 300 (100);

¹³ C_2 -1-Iodo-3-[(tert-butyldimethylsilyl)-oxyl]-1,5-undecadiene (**6**). ¹H-NMR δ 6.30 (2H, m, H₁ and H₂), 4.05 (1H, tdd, J=6, 1.2 Hz, H₃). ¹³ C_2 -5-[(tert-Butyldimethylsilyl)oxy]-1-(trimethylsilyl)-3,7-trideca-

dien-1-yne (7). ¹H-NMR δ 6.23 (1H, dddd, $J_{H4-C4} = 150$ Hz, $J_{H4-H3} = 16.8$ Hz, $J_{H4-H5} = 6$ Hz, $J_{H4-C3} = 2.5$ Hz, H₄), 5.6 (1H, dddd, $J_{H3-C3} = 140$ Hz, $J_{H3-H4} = 16.8$ Hz, $J_{H3-C4} = 6$ Hz, $J_{H4-H5} = 2.5$ Hz, H₃), 4.16 (1H, m, H₅), 2.23 (2H, m, H₆); MS (CI-NH₃) [M+H]⁺ m/z = 381; High-resolution MS (EI) found for [M-C₄H₉]⁺ m/z 323.2142, calculated for ${}^{13}C_{2} {}^{12}C_{16}H_{33}OSi_{2}$ 321.2138.

¹³C₂-5-[(tert-Butyldimethylsilyl) oxy]-3,7-tridecadien-1-yne ($\underline{8}$). ¹H-NMR δ 6.24 (1H, dddd, $J_{H4-C4} = 165$ Hz, $J_{H4-H3} = 16.8$ Hz, $J_{H4-H5} = 6$ Hz, $J_{H4-C3} = 2.5$ Hz, H₄), 5.65 (1H, m, $J_{H3-C3} = 177$ Hz, H₃), 4.17 (1H, m, H₅), 2.85 (1H, m, H₁), 2.25 (2H, m, H₆); High-resolution MS (CI-NH₃) found for [M + NH₄]⁺ m/z 326.2771, calculated for ¹³C₂ ¹²C₁₇H₃₈NOSi = 326.2791.

¹³C₂-1-iodo-5-[(tert-Butyldimethylsilyl)oxy]-1,3,7-tridecatriene (**9**). ¹H-NMR δ 7 (1H, m, H₂), 6.09 (1H, m, H₃), 5.70 (1H, m, H₄), 4.12 (1H, m, H₅).

Copyright © 2001 John Wiley & Sons, Ltd.

6, 7, 10, 11 ¹³C labeled leucotriene B₄ synthesis

Figure 6. 6, 7, 10, 11 ¹³C labeled leucotriene B₄ synthesis

¹³C₂-Methyl 5-[(tert-Butyldimethylsilyl)oxy]-6-heptynoate (<u>11</u>). ¹H-NMR δ 4.4 (1H, m, H₆), 2.43 (1H, ddd, $J_{\text{H7-C7}} = 247.5 \text{ Hz}$, $J_{\text{H7-C6}} = 51.4 \text{ Hz}$, $J_{\text{H7-H5}} = 2.1 \text{ Hz}$, H₇).

¹³C₄-Methyl 5,12-Bis[(tert-Butyldimethylsilyl)oxy]eicosa-8,10,14-trien-6-ynoate (<u>12</u>). ¹H-NMR δ 6.56 (1H, m, H₉), 6.18 (1H, m, H₁₀), 5.77 (1H, m, H₁₁), 5.55 (1H, m, H₈),

¹³C₄-Methyl 5,12-Dihydroxy-8,10,14-eicosatrien-6-ynoate (<u>13</u>). ¹H-NMR (300 MHz) idem <u>12</u>. High-resolution **MS of the di-TMS derivative** (**CI–NH**₃) found for $[M+NH_4]^+$ m/z 514.3566, calculated for ¹³C₄ ¹²C₂₃H₅₂NO₄Si₂ = 514.3571;

¹³C₄-Methyl 5,12-Dihydroxy-6,8,10,14-eicosatetraenoate (<u>14</u>). ¹H-NMR (300 MHz) idem <u>12</u>. High-resolution **MS of the di-TMS derivative** (**CI–NH**₃) found for $[M+NH_4]^+$ m/z 516.3733, calculated for ¹³C₄ ¹²C₂₃H₅₄NO₄Si₂ = 516.3728;

¹³ C_4 -5,12-Dihydroxy-6,8,10,14-eicosatetraenoic acid (¹³ C_4 -LTB₄ <u>1</u>). ¹H-NMR: for H₈, H₉, H₁₀, H₁₁ data was identical to literature values obtained after irradiation of ¹³C atoms. Figure 6.

References

- 1. Borgeat P, Samuelson B. J Biol Chem 1979; 254: 2643-2646.
- Lauritsen K, Laursen LS, Bukhave K, Madsen JR. *Gastroenterology* 1988; 95: 11–17.
- Nanji AA, Sadrzadeh SMH, Thomas P, Yamanaka T. Life Sci 1994; 55: 611–620.
- 4. Yong EC, Chi EY, Henderson WR. J Exp Med 1994; 180: 1637-1648.
- 5. Stratton MD, Chandel B, Deshpande Y, Kaminski DL, Li AP, Vernava AM, Longo WE. *Prostaglandins* 1994; **48**: 367–374.
- 6. Zhou W, Levine BA, Olson MS. J Surg Res 1994; 56: 37-44.
- 7. Hofer G, Bieglmayer C, Kopp B, Janisch H. Prostaglandins 1993; 45: 413-426.

Copyright © 2001 John Wiley & Sons, Ltd.

- 8. Amat M, Barcons M, Mancebo J, Mateo J, Oliver A, Mayoral J-F, Foncuberta J, Vila L. Crit Care Med 2000; 28: 57-62.
- 9. Celardo A, Dell'Elba G, Eltantawy ZM, Evangelista V, Cerletti C. J Chromatogr 1994; 658: 261-269.
- 10. Eberhard J, Jepsen S, Albers HK, Acil Y. Anal Biochem 2000; 280: 258-263.
- 11. Westcott JY, Stenmark KR, Murphy RC. Prostaglandins 1986; 31: 227-237.
- 12. Oda Y, Mano N, Asakawa N. J Mass Spectrom 1995; 30: 1671-1678.
- 13. Avignon-Tropis M, Treilhou M, Pougny JR, Fréchard-Ortuno I, Linstrumelle G. Tetrahedron Lett 1991; 35: 7279-7286.
- 14. Treilhou M, Fauve A, Pougny JR, Promé JC, Veschambre H. J Org Chem 1992; 57: 3203-3208.
- 15. Guillerm D, Linstrumelle G. Tetrahedron Lett 1986; 27: 5857-5860.
- 16. Avignon-Tropis M, Pougny JR. Tetrahedron Lett 1989; 30: 4951-4952.
- 17. Negishi E, Takahashi T. Synthesis 1988; 1: 1-19.
- 18. Schmidt HM, Arens JF. Rec Trav Chim 1989; 86: 1138-1142.
- 19. Boland W, Schroer N, Sieler C. Helv Chim Acta 1987; 70: 1025-1040.